Acta Crystallographica Section E

Structure Reports

Online

N-(4-Nitrobenzyl)isoquinolinium bis(2-thioxo-1,3-dithiole-4,5-dithiolato)nickelate(III)

ISSN 1600-5368

Jianding Li, ${ }^{\text {a }}$ Li Yao, ${ }^{\text {a }}$ Yang Su ${ }^{\text {b }}$ and Ruojie Tao ${ }^{\text {a* }}$

${ }^{\text {a }}$ Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475001, People's Republic of China, and ${ }^{\mathbf{b}}$ Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail: rjtao@henu.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.035$
$w R$ factor $=0.075$
Data-to-parameter ratio $=14.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]In the title compound, $\left(\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\left[\mathrm{Ni}\left(\mathrm{C}_{3} \mathrm{~S}_{5}\right)_{2}\right]$, the $\mathrm{Ni}^{\mathrm{III}}$ ion exhibits a square-planar coordination geometry with four S atoms of the two 2-thioxo-1,3-dithiole-4,5-dithiolate (dmit) ligands. Intermolecular $\mathrm{S} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions are observed.

Comment

Extensive research has been focused on the synthesis and characterization of bis-dithiolate-metal complexes and their analogues, due to their properties and potential applications as conducting/magnetic and non-linear optical (NLO) materials (Cassoux, 1999). Amongst these, metal complexes with 2-thioxo-1,3-dithiole-4,5-dithiolate (dmit) are well known as molecular conductors.

(I)

The title compound (I) comprises $\left[\mathrm{Ni}^{\mathrm{III}}(\mathrm{dmit})_{2}\right]^{-}$anions and N -(4-nitrobenzyl)isoquinolinium cations (Fig. 1), segregated into layers approximately in the (202) planes (Fig. 2). The $\mathrm{Ni}^{\mathrm{III}}$ ion adopts a square-planar coordination geometry with four S atoms of the two dmit ligands, with $\mathrm{Ni}-\mathrm{S}$ bond lengths ranging from 2.1466 (8) to 2.1567 (9) \AA. The $\left[\mathrm{Ni}^{\mathrm{III}}(\mathrm{dmit})_{2}\right]^{-}$ anions form pairs across centres of inversion, with their leastsquares planes parallel and Ni1 $\cdots \mathrm{S} 5^{\mathrm{i}}$ contacts of 3.795 (1) \AA [symmetry code: (i) $2-x, 2-y,-z$]. Neighbouring pairs are twisted with respect to each other so that the dihedral angle between the planes of adjacent $\left[\mathrm{Ni}^{\mathrm{III}}(\mathrm{dmit})_{2}\right]^{-}$anions is $71.2(1)^{\circ}$. Intermolecular $\mathrm{S} \cdots \mathrm{S}$ interactions in this region include $\mathrm{S} 2 \cdots \mathrm{~S} 10^{\mathrm{ii}}=3.592$ (1), $\mathrm{S} 8 \cdots \mathrm{~S}^{\mathrm{iii}}=3.389$ (1) and S8 \cdots S10 $0^{\text {iii }}=3.560$ (1) \AA [symmetry codes: (ii) $\frac{1}{2}+x, 1.5-y$, $-\frac{1}{2}+z$; (iii) $1.5-x,-\frac{1}{2}+y, \frac{1}{2}-z$). Within the layers of $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}$cations, the isoquinoline groups adopt offset face-to-face arrangements, and the 4-nitrobenzyl groups adopt edge-to-face arrangements (the interplanar distance of the isoquinoline rings is $3.44 \AA$), forming $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2).
sodium ($0.092 \mathrm{~g}, 4.0 \mathrm{mmol}$) was added at room temperature to give a bright red solution. To this solution, $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.177 \mathrm{~g}, 1.0 \mathrm{mmol})$ was added. After 20 min , a solution of $\mathrm{I}_{2}(0.127 \mathrm{~g}, 0.5 \mathrm{mmol})$ in methanol (10 ml) was added, followed after a further 20 min by a solution of N-(4-nitrobenzyl)isoquinolinium bromide $(0.690 \mathrm{~g}$, $2.0 \mathrm{mmol})$ in methanol $(10 \mathrm{ml})$. The solution was stirred for a further 30 min and the resultant solid was collected by filtration. Evaporation of a dilute acetone solution of this powder at room temperature gave single crystals of (I) after 1-2 weeks.

Crystal data

$\left(\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\left[\mathrm{Ni}\left(\mathrm{C}_{3} \mathrm{~S}_{5}\right)_{2}\right]$
$M_{r}=716.65$
Monoclinic, $P 2_{1} / n$
$a=14.746$ (3) А
$b=9.365(2) \AA$ 。
$c=19.898(4) \AA$
$\beta=102.692$ (4) ${ }^{\circ}$
$V=2680.6(10) \AA^{3}$

Data collection

Bruker SMART APEX CCD
diffractometer
φ and ω scans
Absorption correction: multi-scan
$S A D A B S$ (Bruker, 2000)
$T_{\text {min }}=0.70, T_{\text {max }}=0.85$

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.776 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=1.53 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Block, black } \\
& 0.3 \times 0.2 \times 0.1 \mathrm{~mm}
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.075$
$S=0.98$
4702 reflections
334 parameters

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0331 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.009$
$\Delta \rho_{\max }=0.37 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.21 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

Ni1-S4	$2.1529(9)$	Ni1-S6	$2.1466(8)$
Ni1-S5	$2.1509(9)$	Ni1-S7	$2.1567(9)$
S4-Ni1-S5	$93.31(3)$	S5-Ni1-S6	$178.66(3)$
S4-Ni1-S6	$85.44(3)$	S5-Ni1-S7	$87.86(3)$
S4-Ni1-S7	$178.78(3)$	S6-Ni1-S7	$93.40(3)$

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 14-\mathrm{H} 14 \cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.67	$3.456(4)$	143

Symmetry code: (i) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2}$.

H atoms were positioned geometrically and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.93 \AA, U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for aromatic H , and $\mathrm{C}-\mathrm{H}=0.97 \AA, U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for CH_{2}.

Figure 1
The cation and anion in (I), showing the atom-labelling scheme, with displacement ellipsoids drawn at the 50% probability level. H atoms are represented by circles of arbitrary size.

Figure 2
View of (I) along the b axis, showing $\left[\mathrm{Ni}^{\mathrm{III}}(\mathrm{dmit})_{2}\right]^{-}$anions and $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}^{+}$cations segregated into layers approximately in the (202) planes.

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors thank the Natural Science Foundation of Henan Province for financial support.

References

Bruker (2000). SADABS, SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Cassoux, P. (1999). Coord. Chem. Rev. 185-186, 213-232.
Wang, C. S., Batsanov, A. S., Bryce, M. R. \& Howard, J. A. K. (1998). Synthesis, pp. 1615-1618.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

